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Abstract—We consider the problem of direction of arrival
(DOA) estimation using a newly proposed structure of co-prime
arrays. A continuous sparse recovery method is implemented in
order to increase resolution. We show that in the noiseless case
one can theoretically detect up to MN

2 sources with only 2M+N
sensors via continuous sparse recovery. The noise statistics of co-
prime arrays are also analyzed to demonstrate the robustness
of the proposed optimization scheme. Using numerical examples,
we show the superiority of the proposed method.

Index Terms—Direction of arrival estimation, co-prime arrays,
continuous sparse recovery method

I. INTRODUCTION

Co-prime arrays were proposed in [1] to increase the
degrees of freedom of the array by studying the covariance
matrix of the received signals among different sensors. It was
shown that by using O(M + N) sensors, this structure can
achieve O(MN) degrees of freedom. In [2] the authors proved
that an increased number of sources can be detected by co-
prime arrays using MUSIC with spatial smoothing. However,
the application of spatial smoothing reduces the obtained
virtual array aperture [3]. Another methodology uses sparsity
based recovery to overcome this disadvantage of subspace
methods [3]. The assumption made by sparsity methods is that
all sources are located exactly on the predefined grid points.
Off-grid targets can deteriorate the performance of sparse
recovery significantly [4]. In [5], the joint sparsity between
the original signal and grid mismatches was exploited during
the DOA estimation for co-prime arrays. Due to the first order
approximation used in [5], the estimation performance is still
limited by the higher order modeling error.

To overcome the difficulty of convential sparse recovery,
a recently developed continuous sparse recovery method [6],
[7] is utilized in this paper to perform DOA estimation with
co-prime arrays. One merit of this method is that it considers
all the possible locations within the interested range, and thus
does not suffer from modeling error. Using this framework we
demonstrate theoretically that with 2M+N sensors, co-prime
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arrays can detect up to MN

2 sources. We then establish the
robustness of the proposed method under Gaussian noise.

Throughout the paper, we use capital italic bold letters to
represent matrices and operators, and lowercase italic bold
letters to represent vectors. For a given matrix A, A⇤ denotes
the conjugate transpose matrix, AT denotes the transpose, and
A

H represents the conjugate matrix without transpose. We use
A

mn

to denote the (m,n)th element of A. We use ⌦ to denote
the Kronecker product of two matrices. For a given operator
F , F ⇤ denotes the conjugate operator of F . Given a vector
x, we use kxk1 and kxk2 to denote its `1 and `2 norms; x

i

and x[i] are both used to represent the ith element of x. For
a function f , kfk

L1 , kfkL2 , kfkL1 are its `1, `2, `1 norms.

II. DOA ESTIMATION WITH CO-PRIME ARRAYS

Consider a linear array with L sensors which may be
non-uniformly located. Assume that there are K narrow
band sources located at ✓1, ✓2, . . . , ✓K with signal powers
�2
1 ,�

2
2 , . . . ,�

2
K

. The steering vector for the kth source located
at ✓

k

is a(✓
k

) 2 CL⇥1 with lth element ej(2⇡/�)dl sin(✓k),
in which d

l

is the location of the lth sensor and � is the
wavelength. The data collected by all sensors at time t can be
expressed as

x(t) =

KX

k=1

a(✓
k

)y
k

(t) + "(t), (1)

for t = 1, . . . , T , in which "(t) 2 CL⇥1 is an i.i.d. white
Gaussian noise CN (0,�2

), x is a vector where each element is
the data at the lth sensor, and y

k

(t) represents the transmitted
signal from the kth source at time t, which is distributed
as CN (0,�2

k

). We assume that the sources are temporally
uncorrelated.

The correlation matrix among the L sensors can then be
expressed as

R

xx

= E[x(t)x⇤
(t)] =

KX

k=1

�2
k

a(✓
k

)a

⇤
(✓

k

) + �2
I. (2)

After vectorizing the covariance matrix R

xx

, we have

z = vec(R

xx

) = �(✓1, ✓2, . . . , ✓K)s+ �21
n

, (3)
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where �(✓1, . . . , ✓K) = [a(✓1)
H ⌦ a(✓1), . . . ,a(✓K)

H ⌦
a(✓

K

)]. s = [�2
1 ,�

2
2 , . . . ,�

2
K

], and 1
n

= [e

T
1 , e

T
2 , . . . , e

T
L

]

T,
where e

i

denotes a vector with all zero elements, except for
the ith element, which equals to one.

From equation (3), we see that s behaves like a coherent
source and �21

n

becomes a deterministic noise term. The
distinct rows in � act as a larger virtual array with sensors
located at d

i

�d
j

, with 1  i, j  L. Consider a co-prime array
structure consisting of two arrays with N and 2M sensors
respectively. The locations of the N sensors are in the set
{Mnd, 0  n  N � 1}, and the locations of the 2M sensors
are in the set {Nmd, 0  m  2M � 1}.The locations of the
virtual sensors in (3) are then given by the cross difference
set {±(Mn�Nm)d, 0  n  N � 1, 0  m  2M � 1} and
the two self difference sets. In order to implement continuous
sparse recovery, we are interested in generating a consecutive
range of virtual sensors. It was shown in [2] that when M and
N are coprime numbers, a consecutive range can be created
from �MNd to MNd from the virtual array.

By removing repeated rows of (3) and sorting the remaining
rows from �MNd to MNd, we have the linear model
rearranged as

˜

z =

˜�s+ �2
˜

w. (4)

It is easy to verify that ˜

w 2 R(2MN+1)⇥1 is a vector whose
elements all equal zero, except the (MN+1)th element equals
one. The matrix ˜� 2 R(2MN+1)⇥K is the steering matrix for
a uniform linear array (ULA) with 2MN + 1 sensors and
˜

�

m,n

= ejmd

2⇡
� sin(✓n) with m = �MN,�MN+1, . . . ,MN

and n = 1, 2, . . . ,K. Therefore, (4) can be regarded as a ULA
detecting a coherent source s with deterministic noise term.

III. DOA ESTIMATION USING CONTINUOUS SPARSE
RECOVERY

DOA estimation with co-prime arrays can be related to the
continuous sparse recovery method [6] by a straightforward
change of variables. Letting ⌧

k

=

d

�

(1� sin(✓
k

)) for all k, the
linear model of (4) can be transformed into

r
n

=e�j2⇡n d
�
(z̃

n

� �2w̃
n

) = e�j2⇡n d
�

KX

k=1

s
k

ej2⇡n
d
� sin(✓k)

=

KX

k=1

s
k

e�j2⇡n⌧k
=

Z 1

0

e�j2⇡n⌧s(d⌧), (5)

where n = �MN,�MN + 1, . . . ,MN � 1,MN. Us-
ing the operator F to denote the low frequency measure-
ment operator, we can write r = Fs, in which r =

[r(�MN), . . . , r(MN)]

T and s = s(⌧), 0  ⌧  1, where
the measure s(⌧) is given as:

s(⌧) =

KX

k=1

s
k

�
⌧k . (6)

We use T = {⌧
k

, 1  k  K} to denote the support set.
The following convex optimization formula was proposed

in [6] to solve the continuous sparse recovery problem:

min

s

kskTV s.t. F s = r. (7)

Total variation minimization is introduced to encourage the
sparsity in continuous signals, and is defined as

kskTV = sup

1X

j=1

|s(B
j

)|,

the supremum being taken over all partitions of the set [0, 1]
into countable collections of disjoint measurable sets B

j

.
A theorem about the resolution and degrees of freedom for

co-prime arrays can be directly derived using Theorem 1.2
in [6]. Before introducing the theorem, we first define the
minimum distance between any two sources as

�(✓) = min

✓i,✓j ,✓i 6=✓j

| sin(✓
i

)� sin(✓
j

)|.

Theorem III.1. Consider a co-prime array consisting of
two linear arrays with N and 2M sensors respectively. The
distances between two consecutive sensors are Md for the
first array and Nd for the second array, where M and N are
co-prime numbers, and d  �

2 . Suppose we have K sources
located at ✓1, . . . , ✓K . If the minimum distance follows

�(✓) � 2�

MNd
,

then by solving the convex optimization (7) with the signal
model (5), one can recover the locations ✓

k

for k = 1, . . . ,K
exactly. The maximum number of sources that can be detected
is given by

Kmax =

MNd

�
.

When the covariance matrix R

xx

in (2) is approximated
using a finite time sample T , we can formulate the following
super resolution optimization problem, which considers the
noise, as

min

s

kskTV s.t. kF s� rk2  ✏. (8)

In order to analyze the robustness of (8), a high resolution
kernel is introduced in [7] referred to as the Fejér kernel. In
our case it has a cut-off frequency f

h

> MN as is given by

K
h

(t) =
1

f
h

fhX

k=�fh

(f
h

+ 1� |k|)ej2⇡kt. (9)

Theorem III.2. Consider a co-prime array with the same
structure as in Theorem III.1. Let s(⌧) =

P
K

k=1 sk�⌧k . T time
sample points are collected for each receiver. By taking the
transformation in (5) and solving the optimization (8) with
sopt as the optimal function, we have that

kK
h

⇤ (sopt � s)k
L1  C0

f2
h

M2N2
✏,

with probability at least 1 � ↵e��(✏)T when ✏ 
16

p
2MN + 1�2, where �(✏) is a increasing function of ✏.

Here C0 and ↵ are positive constant numbers.

Remark:
K

h

defined in (9) is a low pass filter with cut-off frequency
f
h

> MN . By convolving it with the reconstructed error
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sopt � s we get the reconstruction error details up to the
frequency f

h

. The proof is a nontrivial extension of the work
in [7], and can be found in the journal version of this paper
[8].

IV. DOA ESTIMATION VIA SEMIDEFINITE PROGRAMMING

We now derive an optimization framework to reconstruct s
for co-prime arrays. For DOA estimation the noise power �2

is normally unknown. Thus, a more realistic optimization is
reformulated as

min

s,�

2�0
kskTV s.t. kr � F s� �2

wk2  ✏, (10)

in which w
n

= w̃
n

e�j2⇡n d
� . The dual problem takes the form

max

u

Re[u

⇤
r]� ✏kuk2

s.t. kF ⇤
uk

L1  1,Re[u⇤
w]  0. (11)

Here u is the dual variable. Due to the first constraint in (11),
the problem itself is still an infinite dimensional optimization.
It was shown in [6] that the first constraint can be recast as
a semidefinite matrix constraint. Thus the infinite dimensional
dual problem is equivalent to the following semidefinite pro-
gramming (SDP):

max

u,Q

Re[u

⇤
r]� ✏kuk2

s.t.


Q u

u

⇤
1

�
⌫ 0, Re[u

⇤
w]  0, (12)

2MN+1�jX

i=1

Q

i,i+j

=

⇢
1 j = 0,
0 j = 1, 2, . . . , 2MN.

Solving (12) yields the optimal solution only for the dual
problem. The following lemma is introduced to link the
solutions of the primal and dual problems.

Lemma IV.1. Let sopt and uopt be the optimal solutions of
the primal problem (10) and dual problem (12) respectively.
Then

F

⇤
uopt(⌧) = sgn(sopt(⌧))

for all ⌧ such that sopt(⌧) 6= 0.

The support set T can be estimated by root-finding based
on the trigonometric polynomial 1 � |F ⇤

u(⌧)|2 = 0. Let
Test denote the estimation of the support sets, and use ⌧est[i]
to denote elements in Test with 1  i  Kest. A matrix
F

est 2 C(2MN+1)⇥Kset can be formulated, with measurement
r expressed as

r = F

est
s0 + �2

w + e, (13)

in which s0 2 RKest , F

est
m,n

= e�jmd2⇡⌧est[n] with m =

�MN,MN + 1, . . . ,MN and n = 1, . . . ,Kest, and e is
the error term due to the limited number of time samples.

Due to the the numerical issue in the root finding process,
the cardinality of Test is normally larger than the cardinality
of T , i.e., Kest � K. It is possible in some cases that Kest �
2MN+1, which leads to an ill-conditioned linear system (13).

Sparsity can then be exploited on this signal s0. A convex
optimization in the discrete domain can be formulated as

min

s0,�
2�0

ks0k1 s.t. kr � F

est
s0 � �2

wk2  ✏
d

. (14)

The ✏
d

in (14) is normally chosen to be larger than ✏ in (10)
since the noise level is expected to be higher in (13) due
to inevitable error from the root finding process. Assuming
that the optimization solution of (14) is sest 2 RKest , the
estimation of s in the continuous domain can be represented
as

sopt =

KestX

i=1

sest[i]�
⌧est[i].

V. NUMERICAL RESULTS

We consider a co-prime array with 11 sensors. One set of
sensors is located at positions [0, 3, 6, 9, 12]d, and the second
set of sensors is located at positions [0, 5, 10, 15, 20, 25]d,
where d is taken as half of the wavelength. Thus N = 5

and M = 3. The first sensors from both sets are collocated.
It is easy to show that the correlation matrix generates a
virtual array with lags from �17d to 17d. We compare the
continuous sparse recovery (CSR) techniques with MUISC
and also with the discrete sparse recovery method (DSR)
considering grid mismatches [5]. The MUSIC method in this
simulation follows the spatial smoothing technique in [2]. For
the discrete sparse recovery method, we take the grid from
�1 to 1, with step size 0.005 for sin(✓). The noise levels ✏
in the optimization formulas are chosen by cross validation.
We consider 15 narrow band signals located at sin(✓) =

[�0.8876,�0.7624,�0.6326,�0.5096,�0.3818,�0.2552,
� 0.1324,�0.0046, 0.1206, 0.2414, 0.3692, 0.4972, 0.6208,
0.7454, 0.8704].

A. Estimation Accuracy

In this first numerical example, we verify that continuous
sparse recovery increases the degrees of freedom to O(MN)

by implementing the coprime arrays’ structure. The ✏ for CSR
is taken as 5, and ✏

d

is taken as 10 while DSR uses ✏ = 10.
In Fig. 1, we use a dashed line to represent the true directions
of arrival. Then we test the estimation accuracy of these three
methods via Monte Carlo simulations.

Since traditional MUSIC does not yield the DOA of each
source directly, we use the Root MUSIC algorithm when
calculating the DOA estimation accuracy. For simplicity, we
will still refer them both as MUSIC in this section. The number
of sources is assumed to be known for the MUSIC algorithm
in this simulation, while sparse methods do not assume this a
priori.

Figure 2 shows the DOA estimation error with respect
to changing SNR after 50 Monte Carlo simulations. The
average CPU times for running CSR, DSR and MUSIC are
6.93s, 9.30s, and 1.46s respectively. The estimation error is
calculated based on the sine function of the DOAs. We can
see that CSR performs better than DSR uniformly. Both sparse
recovery methods achieve better DOA estimation accuracy
than MUSIC.
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Fig. 1: Normalized spectra for CSR, MUSIC, and DSR, with
T = 500 and SNR=�10dB.
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Fig. 2: DOA estimation errors for CSR, MUSIC, and DSR,
with T = 500.

In Fig. 3 we show that with a changing number of snapshots
the proposed CSR also exhibits better estimation accuracy
than either DSR or MUSIC. The performance of MUSIC and
DSR approach the performance of CSR when the number
of snapshots approaches 5000. The average CPU times for
running CSR, DSR and MUSIC are 6.50s, 7.91s, and 1.43s
respectively.

B. Resolution Ability

Finally we compare the resolution abilities of the MUSIC al-
gorithm and the proposed continuous sparse recovery method.
We show that CSR is capable of resolving very closely located
signals. In this simulation, two sources are closely located at
�32

� and �30

�.The value of ✏ is chosen to be 0.7� and ✏
d

is
set to be 2✏ in the CSR, where � is the noise power. MUSIC
assumes that the number of sources is known. Even given the
number of sources, the MUSIC algorithm fails to resolve the
two closely located sources while CSR resolves successfully.

VI. CONCLUSIONS

In this work, we extended the mathematical theory of
continuous sparse recovery to DOA estimation using co-prime

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

−3

Number of Samples

D
O

A
 E

st
im

a
tio

n
 E

rr
o

r

 

 

MUSIC
Discrete SR
Continuous SR

Fig. 3: DOA estimation error for CSR, MUSIC, and DSR,
with SNR=�10 dB.
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Fig. 4: Resolution capability using CSR and MUSIC algo-
rithm, with SNR=�5 dB, T = 500.

arrays. A primal-dual approach was utilized to transform
the original infinite dimensional optimization to a solvable
semidefinite program. In the future we will extend this idea
to random arrays and also generalize the scenario to consider
correlations among sources.
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